Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Water Res X ; 22: 100212, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38327899

ABSTRACT

Sound urban water management relies on extensive and reliable monitoring of water infrastructure. As low-cost sensors and networks have become increasingly available for environmental monitoring, urban water researchers and practitioners must consider the benefits and disadvantages of such technologies. In this perspective paper, we highlight six technical and socio-technological considerations for low-cost monitoring technology to reach its full potential in the field of urban water management, including: technical barriers to implementation, complementarity with traditional sensing technologies, low-cost sensor reliability, added value of produced information, opportunities to democratize data collection, and economic and environmental costs of the technology. For each consideration, we present recent experiences from our own work and broader literature and identify future research needs to address current challenges. Our experience supports the strong potential of low-cost monitoring technology, in particular that it promotes extensive and innovative monitoring of urban water infrastructure. Future efforts should focus on more systematic documenting of experiences to lower barriers to designing, implementing, and testing of low-cost sensor networks, and on assessing the economic, social, and environmental costs and benefits of low-cost sensor deployments.

2.
Data Brief ; 51: 109800, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053597

ABSTRACT

This dataset of Urban Nature Games provides information, ratings, and categorizations of different types of games that incorporate concepts of urban planning and ecosystem services or nature-based solutions. It consists of games retrieved from systematic searches on various search engines and public databases, using keywords related to: urban design and planning; ecosystem services and nature-based solutions; and game-based approaches. Recorded meta information includes game names, developers, links to each game's documentation, relevant publications, as well as generic playing information such as play duration, number of players, target group, distribution format, play mode, and costs. Of the 69 games compiled, 37 games have been rated of "high" to "medium" relevance based on their descriptions, and have been further assessed and categorized based on a framework incorporating concepts of urban planning and nature-based solutions, the game's scope, and practice. Among the 22 "high" relevance games, 41% can and have been used to engage multiple stakeholders, and 36% to engage citizens and communities. This data article relates to the research article entitled "Urban Nature Games for integrating nature-based solutions in urban planning: a review", and presents a more detailed, editable version of the dataset. The purpose is to provide a hands-on resource for educators, practitioners, and researchers to directly enable them to select their most suitable games linking ecosystem services and nature-based solutions with urban planning.

3.
Integr Environ Assess Manag ; 18(1): 135-147, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34411439

ABSTRACT

Nature-based solutions (NBS) are an increasingly popular approach to water resources management, with a growing number of projects designed to take advantage of landscape effects on water flow. As NBS for water are developed, producing hydrologic information to inform decisions often requires substantial investment in data acquisition and modeling; for this effort to be worthwhile, the information generated must be useful and used. We apply an evaluation framework of salience (type of information), credibility (quality of information), and legitimacy (trustworthiness of information) to assess how hydrologic modeling outputs have been used in NBS projects by three types of decision makers: advocates, implementers, and analysts. Our findings, based on documents and interviews with watershed management programs in South America currently implementing NBS, consider how hydrologic modeling supports two types of decisions for NBS projects: quantifying the hydrologic impact of potential and existing NBS and prioritizing where NBS might be sited within a watershed. To help inform future modeling studies, we identify several problematic assumptions that analysts may make about the credibility of modeled outputs for NBS when advocates and implementers are not effectively engaged. We find that salient, credible, and legitimate results in applications evaluating NBS for water are not always generated in the absence of clear communication and engagement. Integr Environ Assess Manag 2022;18:135-147. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Hydrology , Water , Ecotoxicology
4.
Environ Manage ; 69(4): 699-718, 2022 04.
Article in English | MEDLINE | ID: mdl-33860825

ABSTRACT

In Southeast Asia, projections of rapid urban growth coupled with high water-related risks call for large investments in infrastructure-including in blue-green infrastructure (BGI) such as forests, parks, or vegetated engineered systems. However, most of the knowledge on BGI is produced in the global North, overlooking the diversity of urban contexts globally. Here, we review the literature on BGI for flood risk mitigation and water quality improvement in Southeast Asian cities to understand the scope of practical knowledge and identify research needs. We searched for evidence of local types of BGI in peer-reviewed and grey literature and assessed the performance of BGI based on hydrological, societal, and environmental metrics. The body of literature on BGI in Southeast Asia is small and dominated by wealthier countries but we found evidence of uptake among researchers and practitioners in most countries. Bioretention systems, constructed wetlands, and green cover received the most attention in research. Evidence from modelling and laboratory studies confirmed the potential for BGI to address flooding and water quality issues in the region. However, practical knowledge to mainstream the implementation of BGI remains limited, with insufficient primary hydrological data and information on societal and environmental impacts. In addition, the performance of BGI in combination with grey infrastructure, under climate change, or in informal settlements is poorly studied. Future research and practice should focus on producing and sharing empirical data, ultimately increasing the regional knowledge base to promote efficient BGI strategies.


Subject(s)
Rain , Water Quality , Asia, Southeastern , Cities , Floods
5.
R Soc Open Sci ; 8(12): 202174, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34909207

ABSTRACT

Urban green infrastructure, especially trees, are widely regarded as one of the most effective ways to reduce urban temperatures in heatwaves and alleviate the adverse impacts of extreme heat events on human health and well-being. Nevertheless, urban planners and decision-makers are still lacking methods and tools to spatially evaluate the cooling effects of urban green spaces and exploit them to assess greening strategies at the urban agglomeration scale. This article introduces a novel spatially explicit approach to simulate urban greening scenarios by increasing the tree canopy cover in the existing urban fabric and evaluating their heat mitigation potential. The latter is achieved by applying the InVEST urban cooling model to the synthetic land use/land cover maps generated for the greening scenarios. A case study in the urban agglomeration of Lausanne, Switzerland, illustrates the development of tree canopy scenarios following distinct spatial distribution strategies. The spatial pattern of the tree canopy strongly influences the human exposure to the highest temperatures, and small increases in the abundance of tree canopy cover with the appropriate spatial configuration can have major impacts on human health and well-being. The proposed approach supports urban planning and the design of nature-based solutions to enhance climate resilience.

6.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-33990458

ABSTRACT

Nature underpins human well-being in critical ways, especially in health. Nature provides pollination of nutritious crops, purification of drinking water, protection from floods, and climate security, among other well-studied health benefits. A crucial, yet challenging, research frontier is clarifying how nature promotes physical activity for its many mental and physical health benefits, particularly in densely populated cities with scarce and dwindling access to nature. Here we frame this frontier by conceptually developing a spatial decision-support tool that shows where, how, and for whom urban nature promotes physical activity, to inform urban greening efforts and broader health assessments. We synthesize what is known, present a model framework, and detail the model steps and data needs that can yield generalizable spatial models and an effective tool for assessing the urban nature-physical activity relationship. Current knowledge supports an initial model that can distinguish broad trends and enrich urban planning, spatial policy, and public health decisions. New, iterative research and application will reveal the importance of different types of urban nature, the different subpopulations who will benefit from it, and nature's potential contribution to creating more equitable, green, livable cities with active inhabitants.


Subject(s)
City Planning , Ecosystem , Exercise , Models, Theoretical , Public Health , Humans
7.
J Environ Manage ; 270: 110792, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721288

ABSTRACT

A common objective of watershed management programs is to secure water supply, especially during the dry season. To develop such programs in contexts of low data and resource availability, program managers need tools to understand the effect of landscape management on the seasonal water balance. However, the performance of simple, parsimonious models is poorly understood. Here, we examine the behavior of a geospatial tool, developed to map monthly water budgets and baseflow contributions and forming part of the InVEST (integrated valuation of ecosystem services and trade-offs) software suite. The model uses monthly climate, topography, and land-use data to compute spatial indices of groundwater recharge, baseflow, and quickflow. We illustrate the model application in two large basins in Peru and Myanmar, where we compare results with observed data and alternative hydrologic models. We show that the spatial distribution of baseflow contributions correlated well with an established model in the Peruvian basin (r2 = 0.81 at the parcel scale). In Myanmar, the model shows an overall satisfactory performance for representing month to month variation (Nash-Sutcliffe-Efficiency 0.6-0.8); however, errors are scale dependent highlighting limitations in representing processes in large basins. Our study highlights modeling challenges, in particular trade-offs between model complexity and accuracy, and illustrates the role that parsimonious models can play to support watershed management programs.


Subject(s)
Ecosystem , Water , Myanmar , Peru , Seasons
8.
Sci Total Environ ; 705: 135871, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31836212

ABSTRACT

Investments in watershed services programs hold the promise to protect and restore ecosystems and water resources. The design and implementation of such programs is often accompanied by hydrologic modeling and monitoring, although the role of hydrologic information in meeting the needs of program managers remains unclear. In the Camboriú watershed, Brazil, we explored the value of hydrologic modeling and monitoring with respect to two dimensions: scientific credibility and use of generated knowledge in the design, implementation, and evaluation of the watershed management program. We used a combination of semi-structured interviews, focus groups, and hydrologic modeling under various levels of data availability to examine when improved models and data availability might build credibility and provide more useful information for decision makers. We found that hydrologic information was not actually used for the detailed design, but rather contributed to broad-scale support of the program by increasing scientific credibility. Model sophistication and data availability improved the credibility of hydrologic information but did not affect actual decisions related to program design. Hydrologic monitoring data were critical for model calibration, and high-resolution land use and land cover data, obtained via remote sensing, affected some model outputs which were not used to design the program. Our study suggests that identifying how hydrologic data will inform decision making should guide the level of effort used in hydrologic modeling and monitoring.

9.
Science ; 366(6462): 255-258, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31601772

ABSTRACT

The magnitude and pace of global change demand rapid assessment of nature and its contributions to people. We present a fine-scale global modeling of current status and future scenarios for several contributions: water quality regulation, coastal risk reduction, and crop pollination. We find that where people's needs for nature are now greatest, nature's ability to meet those needs is declining. Up to 5 billion people face higher water pollution and insufficient pollination for nutrition under future scenarios of land use and climate change, particularly in Africa and South Asia. Hundreds of millions of people face heightened coastal risk across Africa, Eurasia, and the Americas. Continued loss of nature poses severe threats, yet these can be reduced 3- to 10-fold under a sustainable development scenario.


Subject(s)
Crops, Agricultural , Models, Theoretical , Nature , Pollination , Water Quality , Africa , Americas , Asia , Climate Change , Conservation of Natural Resources , Developing Countries , Ecosystem , Environment , Europe , Humans , Water Pollution
10.
Sci Total Environ ; 610-611: 666-677, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28826113

ABSTRACT

A wide variety of tools aim to support decision making by modelling, mapping and quantifying ecosystem services. If decisions are to be properly informed, the accuracy and potential limitations of these tools must be well understood. However, dedicated studies evaluating ecosystem service models against empirical data are rare, especially over large areas. In this paper, we report on the national-scale assessment of a new ecosystem service model for nutrient delivery and retention, the InVEST Nutrient Delivery Ratio model. For 36 river catchments across the UK, we modelled total catchment export of phosphorus (P) and/or nitrogen (N) and compared model outputs to measurements derived from empirical water chemistry data. The model performed well in terms of relative magnitude of nutrient export among catchments (best Spearman's rank correlation for N and P, respectively: 0.81 and 0.88). However, there was wide variation among catchments in the accuracy of the model, and absolute values of nutrient exports frequently showed high percentage differences between modelled and empirically-derived exports (best median absolute percentage difference for N and P, respectively: ±64%, ±44%). The model also showed a high degree of sensitivity to nutrient loads and hydrologic routing input parameters and these sensitivities varied among catchments. These results suggest that the InVEST model can provide valuable information on nutrient fluxes to decision makers, especially in terms of relative differences among catchments. However, caution is needed if using the absolute modelled values for decision-making. Our study also suggests particular attention should be paid to researching input nutrient loadings and retentions, and the selection of appropriate input data resolutions and threshold flow accumulation values. Our results also highlight how availability of empirical data can improve model calibration and performance assessment and reinforce the need to include such data in ecosystem service modelling studies.

12.
PLoS One ; 12(9): e0184951, 2017.
Article in English | MEDLINE | ID: mdl-28934282

ABSTRACT

Inclusion of ecosystem services (ES) information into national-scale development and climate adaptation planning has yet to become common practice, despite demand from decision makers. Identifying where ES originate and to whom the benefits flow-under current and future climate conditions-is especially critical in rapidly developing countries, where the risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how ecosystems provide key benefits to the country's people and infrastructure. We model the supply of and demand for sediment retention, dry-season baseflows, flood risk reduction and coastal storm protection from multiple beneficiaries. We find that locations currently providing the greatest amount of services are likely to remain important under the range of climate conditions considered, demonstrating their importance in planning for climate resilience. Overlap between priority areas for ES provision and biodiversity conservation is higher than expected by chance overall, but the areas important for multiple ES are underrepresented in currently designated protected areas and Key Biodiversity Areas. Our results are contributing to development planning in Myanmar, and our approach could be extended to other contexts where there is demand for national-scale natural capital information to shape development plans and policies.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Ecosystem , Adaptation, Physiological , Decision Making , Humans , Myanmar , Social Planning
13.
Nat Commun ; 8: 15065, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28429710

ABSTRACT

International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions.


Subject(s)
Conservation of Natural Resources/methods , Environmental Pollution/prevention & control , Models, Statistical , Polymers/chemistry , Saccharum/chemistry , Zea mays/chemistry , Biodiversity , Ecology , Ecosystem , Equipment Reuse/statistics & numerical data , Greenhouse Gases/chemistry , Humans , Industrial Development , Internationality , Soil/chemistry , Water
14.
Sci Total Environ ; 580: 1381-1388, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28040219

ABSTRACT

Geospatial models are commonly used to quantify sediment contributions at the watershed scale. However, the sensitivity of these models to variation in hydrological and geomorphological features, in particular to land use and topography data, remains uncertain. Here, we assessed the performance of one such model, the InVEST sediment delivery model, for six sites comprising a total of 28 watersheds varying in area (6-13,500km2), climate (tropical, subtropical, mediterranean), topography, and land use/land cover. For each site, we compared uncalibrated and calibrated model predictions with observations and alternative models. We then performed correlation analyses between model outputs and watershed characteristics, followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model performance varied across sites (overall r2=0.47), but estimates of the magnitude of specific sediment export were as or more accurate than global models. We found significant correlations between metrics of sediment delivery and watershed characteristics, including erosivity, suggesting that empirical relationships may ultimately be developed for ungauged watersheds. Model sensitivity to DEM resolution varied across and within sites, but did not correlate with other observed watershed variables. These results were corroborated by sensitivity analyses performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study provides modelers using InVEST or similar geospatial sediment models with practical insights into model behavior and structural uncertainty: first, comparison of model predictions across regions is possible when environmental conditions differ significantly; second, local knowledge on the sediment budget is needed for calibration; and third, model outputs often show significant sensitivity to DEM resolution.

15.
Glob Chang Biol ; 23(1): 28-41, 2017 01.
Article in English | MEDLINE | ID: mdl-27507077

ABSTRACT

Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer-reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Climate , Humans , Uncertainty
16.
Sci Total Environ ; 524-525: 166-77, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25897725

ABSTRACT

There is a growing call for ecosystem services models that are both simple and scientifically credible, in order to serve public and private sector decision-making processes. Sediment retention receives particular interest given the impact of this service on water quality. We developed a new version of the sediment retention model for the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) tool to address previous limitations and facilitate model uncertainty assessment. We tested the model in the Cape Fear basin, North Carolina (NC), performing sensitivity analyses and assessing its ability to detect the spatial variability in sediment retention service for eight subcatchments. The main advantages of the revised model include the use of spatially-explicit, globally available input data, and the explicit consideration of hydrological connectivity in the landscape. The sensitivity analyses in the study catchment identified the erosivity and erodibility factors, together with the cover factor for agricultural land as the most influential parameter for sediment export. Relative predictions, representing the spatial variability in sediment exports, were correctly represented by the model. Absolute sediment exports were also highly correlated with observations, although their interpretation for socio-economic assessments is more uncertain without local knowledge of the dominant erosion processes. This work confirms that the sediment connectivity approach used in the revised InVEST model has great potential to quantify the sediment retention service. Although resources to conduct model calibration and testing are typically scarce, these practices should be encouraged to improve model interpretation and for confident application in different decision-making contexts. Without calibration, the InVEST sediment model still provides relevant information for ecosystem services assessments, especially in decision contexts that involve ranking of sediment export areas, such as spatial prioritization of conservation, development or restoration activities, taking into account non-linear sediment responses to changes in land use.

17.
Int J Environ Res Public Health ; 12(2): 2088-9, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25685955

ABSTRACT

The authors would like to add the following affiliation for Peter Søgaard Jørgensen of paper [1]:   8 International Network of Next-Generation Ecologists, Universitetsparken 15, Building 3, Copenhagen 2100, Denmark[...].

18.
Int J Environ Res Public Health ; 11(11): 11553-8, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25390795

ABSTRACT

Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25-31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a "good" anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with "sustainable development goals".


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Health , Public Health , Humans , Italy
19.
Water Sci Technol ; 69(4): 739-45, 2014.
Article in English | MEDLINE | ID: mdl-24569271

ABSTRACT

Stormwater management strategies increasingly recognise the need to emulate the pre-development flow regime, in addition to reducing pollutant concentrations and loads. However, it is unclear whether current design approaches for stormwater source-control techniques are effective in restoring the whole flow regime, and in particular low flows, towards their pre-development levels. We therefore modelled and compared a range of source-control stormwater management strategies, including some specifically tailored towards enhancing baseflow processes. The strategies were assessed based on the total streamflow volume and three low flow metrics. Strategies based on harvesting tanks showed much greater volume reduction than those based on raingardens. Strategies based on a low flow rate release, aimed at mimicking natural baseflow, failed to completely restore the baseflow regime. We also found that the sensitivity of the low flow metrics to the proportion of catchment treated varied amongst metrics, illustrating the importance of metrics selection in the assessment of stormwater strategies. In practice, our results suggest that realistic scenarios using low flow release from source-control techniques may not be able to fully restore the low flow regime, at least for perennial streams. However, a combination of feasibly-sized tanks and raingardens is likely to restore the baseflow regime to a great extent, while also benefitting water quality through the retention and filtration processes.


Subject(s)
Cities , Rain , Sanitary Engineering , Water Movements , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...